
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 27, No. 6, November–December 2004

Trajectory Planning for Autonomous Aerospace Vehicles
amid Known Obstacles and Conflicts

Hong Iris Yang∗ and Yiyuan J. Zhao†

University of Minnesota, Minneapolis, Minnesota 55455

A discrete search strategy is presented for potential real-time generations of four-dimensional trajectories for
a single autonomous aerospace vehicle amid known obstacles and conflicts. A model of autonomous operation is
first developed. The problem of and requirements on real-time trajectory generations for autonomous aerospace
vehicles are discussed. After an overview of various potential solution frameworks, a discrete search strategy is
developed. In this strategy, a four-dimensional search space is defined and discretized. Potential obstacles and
conflicts are represented by several basic geometric shapes and their combinations. Mathematical conditions are
developed for a trajectory segment to be outside of an obstacle or conflict. Then, the A∗ search technique is used to
obtain trajectory solutions, in which successor points are selected that avoid obstacles and conflicts and that satisfy
dynamic motion constraints of the vehicle. A linear combination of flight distance and flight time is optimized in
the trajectory generation process. A heuristic function that approximates this performance index is developed for
the A∗ search procedure. Examples are provided that illustrate the application of the proposed method.

I. Introduction

A UTONOMOUS aerospace vehicles have become increasingly
attractive for missions where human presence is dangerous or

difficult.1 However, an unpiloted vehicle does not automatically be-
come an autonomous vehicle unless it has some intelligence. Specif-
ically, an autonomous vehicle should be capable of accomplishing
missions on its own. In particular, it should have the ability to plan
its motion trajectories in the lack of timely communications with
base control stations.

Real-time trajectory planning is a key enabling technology for
autonomous operations. Feasible trajectories should enable an au-
tonomous vehicle to reach a desired final destination within a spec-
ified time and to avoid obstacles and potential conflicts with other
vehicles. These trajectories should respect limitations of onboard
control system capabilities and vehicle performances. In addition,
it is desirable that these trajectories can optimize some performance
index.

Developing practical methods for real-time trajectory generation
can be quite challenging. Real-time trajectory generations onboard
autonomous vehicles must be sufficiently fast and always reliable.
In addition, practical methods for real-time trajectory generations
must be able to make do with limited computer time and storage on-
board an autonomous vehicle and limited, even poor, information
available from onboard sensing equipments and communication de-
vices. These challenges are further compounded by the fact that
autonomous aerospace vehicles may often be expected to operate
in dynamic, varying, and sometimes unknown environments and to
engage in aggressive maneuvers near their performance boundaries.

Efforts have been made to develop trajectory generation meth-
ods for various types of autonomous vehicle operations. Krozel2

studied two-dimensional path planning for a vehicle flying at con-
stant altitude in mountainous terrain. The vehicle is considered as
a point mass, and search graphs are constructed to model paths in

Received 10 July 2002; accepted for publication 1 January 2004. Copy-
right c© 2004 by Hong Iris Yang and Yiyuan J. Zhao. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condi-
tion that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0731-5090/04 $10.00 in correspondence with the CCC.

∗Ph.D. Candidate, Aerospace Engineering and Mechanics. Student Mem-
ber AIAA.

†Associate Professor, Aerospace Engineering and Mechanics. Associate
Fellow AIAA.

free space. In Ref. 3, Chandler et al. studied two-dimensional path
planning and coordination of multiple unmanned air vehicles. In par-
ticular, a two-stage solution concept was proposed in which a coarse
polygonal path would first be found and would then be refined to
obtain a flyable trajectory. In Ref. 4, McLain and Beard studied the
coordination of multiple unmanned aerospace vehicle (UAV) ren-
dezvous at a predetermined target location in the horizontal plane.
Further studies of these approaches were made in Ref. 5. In Ref. 6,
Frazzoli et al. presented a randomized motion-planning algorithm
by employing obstacle-free guidance systems as local planners in
a probabilistic roadmap framework for robot motion planning.7 A
family of trim autonomous helicopter trajectories in level flight was
used to construct optimal maneuvers. In Ref. 8, Faiz et al. proposed a
trajectory-planning scheme for differentially flat dynamic systems.
For controls of autonomous vehicles, Mettler et al. & Kanade devel-
oped a parameterized model for a small-scale unmanned helicopter
using a frequency-domain identification technique,9 and in Refs. 10
and 11 feedback control design techniques were examined. Despite
all of these results, significant research efforts are still needed to
advance the state of the art of trajectory planning for autonomous
aerospace vehicles.

In Ref. 12, Sasiadek and Duleba gave a clear review of research
efforts in robotics literature and presented an effective method of
local trajectory planning for a generic autonomous vehicle. In this
method, a motion path is first planned and trajectories as functions
of time are then generated. In addition, the presence of navigational
uncertainties is considered.

This paper presents a global discrete search strategy that can
be potentially used for real-time onboard generations of four-
dimensional trajectories for autonomous aerospace vehicles. Specif-
ically, a general model of autonomous operation is first introduced.
Available solution frameworks for trajectory generations are re-
viewed and compared, and a discrete search paradigm is proposed.
In this paradigm, a four-dimensional search space is first defined
and discretized. Potential obstacles are represented by several basic
geometric shapes and/or their combinations. Mathematical condi-
tions are developed that ensure a trajectory segment to be outside of
an obstacle. Then, the A∗ search scheme in artificial intelligence is
used to determine trajectory solutions. In this search scheme, succes-
sor points are generated that both avoid all specified obstacles and
stay within limits of dynamic vehicle motion constraints. A heuris-
tic function is developed that approximates a linear combination of
minimum distance-to-go and minimum time-to-go. Numerical ex-
amples are presented to illustrate the applications of the proposed
discrete search strategy.

997

998 YANG AND ZHAO

Fig. 1 Autonomous operation model.

II. General Model of Autonomous Operation
All human-made vehicles can eventually be made autonomous

to a certain degree through the use of automation and intelligence.
Whereas different autonomous vehicles may operate in different
environments (air, space, water, or land) and have different require-
ments on onboard trajectory generations, it is helpful to develop a
common model of autonomous operations.

Figure 1 attempts to provide an integrated description of various
physical as well as software components in the operation of a generic
autonomous vehicle and the environment for trajectory generations.
For different types of autonomous vehicles, the various components
in Fig. 1 operate under different principles and have different char-
acteristics. Still, they contain some basic functionalities that are the
same for different autonomous operations. In Fig. 1, vehicle refers
to the basic vehicle construction, excluding add-on hardware or soft-
ware systems. Communication devices and datalinks are needed to
send and/or receive information to/from the base control station and
other vehicles. Here, communication devices represent channels that
are used when needed, whereas datalinks transmit signals automati-
cally at a fixed rate. Environment sensors are used to detect obstacles
in the operational environment and to determine ambient conditions.
Navigation systems contain sensors and measurement equipment
that are used to determine motion states of the autonomous vehicle
itself. Operation database contains information on control system
and vehicle performance limits, preknowledge of the operational en-
vironments, possible in-flight parameter tuning schedules, and any
intelligence for autonomy.

In particular, a three-level hierarchy is proposed for the functions
of mission planning, trajectory generation, and control, all housed in
the onboard computer system. This modular division is by no means
unique, but is convenient for system design and is flexible for future
growth. The main function of the control logic is to maintain vehi-
cle stability and to follow the motion trajectories produced by the

trajectory generation function. In comparison, the trajectory genera-
tion function calculates future motion trajectories that achieve speci-
fied mission objectives, satisfy vehicle performance constraints, stay
away from obstacles in the environment and potential conflicts with
other vehicles, and respect other practical constraints. Finally, mis-
sion planning determines high-level characteristics of maneuvers to
achieve mission objectives while safeguarding the vehicle integrity.
It translates mission objectives into mathematical formulations for
trajectory generations. It can also determine when to replan motion
trajectories.

III. Problem Statement
In trajectory generations, it is convenient to distinguish among

obstacles, potential conflicts, and threats. Obstacles are stationary
or slowly moving objects and can be avoided by flying barely outside
of them. Potential conflicts refer to collisions or near misses between
the own vehicle and other moving objects that are not intentionally
threatening. In comparison, threats, either stationary or moving,
intend to harm the vehicle. Predictable threats may be avoided either
by flying as far as possible or at a safe distance from them. If a safe
distance can be defined around a threat, it can be treated similarly as
obstacles or potential conflicts in the trajectory generation process.
In this case, obstacles, potential conflicts, and threats become motion
constraints to trajectory generations. On the other hand, a threat that
is not fully predictable or may move intelligently needs to be treated
as an adversary threat in trajectory generations.

A key characterization of motion constraints for the purpose of
trajectory generation is when and how well their presences are
known to the onboard system. If the presences of all motion con-
straints are known well in advance for trajectory generations, meth-
ods with well-understood convergence properties can be developed.
In comparison, motion constraints whose presences can only be

YANG AND ZHAO 999

Fig. 2 Basic problem of UAV trajectory planning.

detected when the vehicle is close to them are called pop-up con-
straints. It is in general more difficult to develop solution methods
with well-understood convergence properties for trajectory genera-
tions containing pop-up constraints.

Accordingly, the operational environment for real-time onboard
trajectory generations may be classified into the following types,
ranging from the simplest to the most challenging: 1) The environ-
ment contains only static obstacles, and their locations and proper-
ties are well known in advance. 2) The environment may contain
obstacles, conflicts, and threats but no adversary threats. Their loca-
tions and properties are well known in advance. 3) The environment
may contain obstacles, conflicts, and threats but no adversary threats.
However, their locations and properties are not always accurately
known. 4) In addition to those specified in type 3, the environment
may contain pop-up constraints but no adversary threats. 5) In ad-
dition to those specified in type 4, the environment may contain
adversary threats.

Trajectory generation for a type 2 environment is fundamental
to autonomous aerospace vehicle operation. Solution methods for
type 2 are automatically applicable to type 1 environments and can
lay the foundation to the development of methods for other more
complicated types of environments. In particular, these methods can
be used to provide benchmarks for trajectory generations in other
types of environments.

This paper seeks to address two problems: The first is to develop
a trajectory generation framework that promises to be applicable
to all five types of environments described earlier and to possess
properties listed in the next section. The second is to develop a fast
and reliable solution strategy for type 2 environments. Specifically,
this strategy would be able to plan safe and flyable four-dimensional
trajectories (position and time) for an autonomous aerospace vehi-
cle starting from a given initial state and reaching a specified final
state while optimizing a certain performance index. In a type 2 en-
vironment, all obstacles and potential conflicts are known a priori
and can be time varying (Fig. 2). The following performance index
is optimized:

min I = Kd d f + Kt t f (1)

where d f is the path length of the trajectory, t f is the flight time
of the trajectory, and Kd ≥ 0 and Kt ≥ 0 are appropriate weighting
factors.

IV. Proposed Solution Framework
for Trajectory Generation

Planned flight trajectories for a single autonomous vehicle must
be safe and flyable and should desirably optimize a certain perfor-
mance index. Safety means that these trajectories must avoid all
obstacles, potential conflicts, and threats. Flyability means that they
must be physically possible for the vehicle to follow with acceptable
margins of error and within limitations of onboard control system
capabilities and performance limitations. In this paper, feasible tra-
jectories are both safe and flyable.

An acceptable solution method for real-time onboard trajectory
generations must be able to produce feasible solutions sufficiently
fast with limited computer resources and to make do with limited
quantity and quality of vehicle and environment information from
onboard communication devices and sensors. In addition, a desirable

solution method should be easily expandable to allow for multiple
vehicle coordinations and to handle cases with adversary threats. In
general, a solution method may be evaluated according to some or
all of the following criteria:

The first criterion is completeness. A solution method is complete
if it can always find a feasible trajectory solution when there is one.
In other words, it may be concluded that there is no feasible solution
if a complete method does not find one.

The second is time and space complexity. Time complexity mea-
sures the amount of computational time required to produce a tra-
jectory solution, whereas space complexity measures the computer
memory storage needs.

The third criterion is robustness. A solution method is considered
to be robust if it can produce reliable solutions when measurements
of vehicle states and the environment contain errors.

The fourth is optimality. Optimality measures the degree with
which trajectory solutions produced by a method optimize a given
performance index.

The last criterion is flexibility. A solution method is said to be
flexible if it can be used to solve a wide range of trajectory generation
problems with small modifications.

We first define a general solution framework for onboard trajec-
tory generations that can potentially satisfy most or all of the five
criteria. A systematic overview of available solution frameworks is
highly desirable in this endeavor.

Many theoretical frameworks and their variations may be used
for trajectory generations. These frameworks include optimal con-
trol, parameter optimization, dynamic programming, potential field
method, artificial intelligent methods, graphic theories, geometric
methods, generalizations of robot motion planning methods,7,12−14

etc. Although various frameworks differ significantly in form, they
can be roughly divided into two groups: continuous optimization
and discrete search.

In a continuous optimization framework, solution variables take
on continuous values and, thus, can admit an infinite number of
possible solutions. Presence of uncertainties may be treated in a
stochastic framework or as worst-case scenarios in a deterministic
framework. The presence of adversary objects can be considered
in a game-theoretic approach. A main advantage of the continuous
optimization approach is that it can produce smooth and flyable op-
timal trajectories. On the other hand, the continuous optimization
approach has some significant disadvantages. Numerical solution
methods for a continuous optimization problem typically rely on
good initial guesses for convergence. There can be no a priori guar-
antee on their convergences. In addition, the more constraints, the
more difficult it is in general to find a solution. Furthermore, contin-
uous game problems can be very difficult to solve. These disadvan-
tages make the direct or exclusive use of a continuous optimization
approach difficult for real-time trajectory generations.

For example, the optimal control theory is often used for
aerospace system trajectory generations. It explicitly allows for the
optimization of a performance index and can incorporate vehicle
and actuators dynamics as part of dynamics equations. However,
it is inherently difficult to handle various kinds of constraints, un-
certainties, and/or adversaries using the optimal control theory. In
addition, all numerical solution methods can only yield locally opti-
mal solutions, and their convergence heavily depends on the proper
selection of initial guesses.

In comparison, discrete search schemes determine an optimal so-
lution among a finite, albeit large, number of choices. They can
have systematic starting procedures and theoretical guarantees on
their convergences to globally optimal solutions. In general, these
methods are inherently capable of handling constraint; uncertain-
ties, for example, stochastic dynamic programming; and presences
of adversary objects, for example, minimax formulations. Actually,
the larger the number of constraints, the easier it is in general to find
solutions. On the other hand, the use of discrete search schemes
for autonomous vehicle trajectory generations requires a proper
discretization of the search space, and solutions obtained within
available computational time and computer memory may not be di-
rectly flyable or smooth. Furthermore, an applicable optimization

1000 YANG AND ZHAO

performance index may need to satisfy some requirements such as
being additive.

Clearly, a two-step procedure that properly combines these two
solution frameworks would work well for real-time trajectory gen-
erations of autonomous aerospace vehicles. In such a procedure, a
search space for potential trajectory maneuvers can be first defined
and discretized. An appropriate discrete search scheme may then be
used to yield a coarse optimal trajectory solution. Next, a continuous
optimization method can be used to refine the coarse trajectory so-
lution. In addition to some apparent advantages, this procedure can
be easily expanded to multivehicle trajectory generations through
coordinations over specified waypoints at specified times.

A discrete search strategy is presented as the first part of this two-
step procedure. Key elements of this strategy include proper rep-
resentations of obstacles and conflicts, discretization of the search
space, and application of a discrete search scheme. It generates dis-
crete globally optimal trajectories within a specified search space.

V. Elements of a Discrete Search Strategy
A basic coordinate system, x , y, and h, is used throughout the

paper, where the x axis points to the east, the y axis points to the
north, and the h axis points upward. In general, the transformation
between two coordinate systems is defined through three orientation
angles, φ, θ , and ψ , where ψ is defined through a negative rotation
about the third axis (the h axis), θ is defined through a positive rota-
tion about the first axis, and φ is defined through a positive rotation
about the second axis. For a vehicle, ψ represents the heading angle
measured clockwise from the north (y axis).

A. Representations of Obstacles and Conflicts
Actual obstacles in an operational environment may come in dif-

ferent shapes. In this paper, four geometric shapes are used to repre-
sent basic obstacle elements: ellipsoid, cuboid, cylinder, and pyra-
mid. Obstacles in practice can be adequately described by proper
combinations of these basic shapes or approximated by the closure
of a series of planes. In addition, location and dimension parame-
ters of these obstacle elements can be defined as functions of time
to represent potential conflicts caused by other moving objects.

A three-dimensional ellipsoid obstacle element (Fig. 3) is defined
by nine parameters: coordinates of the center location, xc, yc, and
hc; three semi-axes, a, b, and c; and three orientation angles, φ,
θ , and ψ , that relate the basic coordinate system to the principal
system, X , Y , and H , of the ellipsoid,




X

Y

H


 = T (φ) · T (θ) · T (ψ) ·




x − xc

y − yc

h − hc


 (2)

Fig. 3 Ellipsoid obstacle element.

where

T (φ) =




cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ


 (3)

T (θ) =




1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 (4)

T (ψ) =




cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1


 (5)

If a given point (x p , yp , h p) after the transformation to the principal
system, satisfies

X 2
p

/
a2 + Y 2

p

/
b2 + H 2

p

/
c2 > 1 (6)

it is outside of the ellipsoid obstacle.
A cuboid obstacle element (Fig. 4) is also defined by nine pa-

rameters: coordinates of the center location, xc, yc, and zc; three
dimensions, a, b, and c; and three orientation angles, φ, θ , and ψ .
Transformation to the principal coordinate system is also achieved
by Eq. (2). A given point (x p , yp , h p) would be outside of the cuboid
if, after the transformation, one of the following conditions is met:

|X p| > a/2, |Yp| > b/2, or |Hp| > c/2 (7)

A cylinder obstacle element (Fig. 5) is fully described by eight
parameters, which include coordinates of the center of the bottom

Fig. 4 Cuboid obstacle element.

Fig. 5 Cylinder obstacle element.

YANG AND ZHAO 1001

Fig. 6 Pyramid obstacle element.

surface, xb, yb, and hb; radii of the top and bottom surfaces, Rt and
Rb; the height L; and two orientation angles, φ and θ , where the axis
of the cylinder is initially aligned up with the h axis. Transformation
to a principal body axis is given by




X

Y

H


 = T (φ) · T (θ) ·




x − xb

y − yb

h − hb


 (8)

A given point (x p , yp , h p) is outside of the cylinder if, after the
transformation, one of the following conditions is met:

X 2
p+Y 2

p > [Rb−(Rb−Rt)(Hp/L)]2, Hp < 0, or Hp > L

(9)

In general, an obstacle of arbitrary shape may be well approx-
imated by the closure of a series of planes, where a direction can
be defined for each plane that points inward to the obstacle. Plane
representation is advantageous because planes are relatively easy to
describe mathematically. For example, a square pyramid obstacle
element (Fig. 6) can be defined by the closure of five planes: four on
the sides and one base. This representation can be described com-
pletely with nine parameters that include coordinates of the base
center, xb, yb, and zb; dimensions of the base, a and b; the height
L; and three orientation angles, φ, θ , and ψ . Transformation to the
principal coordinate system can be obtained as in Eq. (2). In the prin-
cipal coordinate system, unit inward-pointing vectors on the base
and the side surfaces of the pyramid can be defined as

n0 = [0, 0, 1]

n1 = [
0, −L

/√
b2 + L2, −b

/√
b2 + L2

]

n2 = [
L
/√

a2 + L2, 0, −a
/√

a2 + L2
]

n3 = [
0, L

/√
b2 + L2, −b

/√
b2 + L2

]

n4 = [−L
/√

a2 + L2, 0, −a
/√

a2 + L2
]

(10)

Let [nix , niy, nih] be the X , Y , and H components of the unit inward-
pointing vectors in the principal coordinate system in Eq. (10),
and (xi , yi , hi) is an arbitrary point on the i th plane, where
i = 0, 1, 2, 3, 4. A given point, x p , yp , or h p , is outside of the
pyramid, after the transformation, if there exists at least one plane
i = 0, 1, 2, 3, or 4, such that

nix (X p − Xi) + niy(Yp − Yi) + nih(Hp − Hi) < 0 (11)

where



X p

Yp

Hp


 = T (φ) · T (θ) · T (ψ) ·




x p − xb

yp − yb

h p − hb


 (12)

and (Xi , Yi , Hi) can be similarly obtained.

B. Feasible Trajectory Line Segments
Whereas the preceding conditions can be used to check if a given

point on a trajectory solution is outside of all obstacles, the line
segment between any two trajectory points must also be outside
of all obstacles. Consider a line segment formed by two endpoints
(x1, y1, h1) and (x2, y2, h2) that themselves are outside of all ob-
stacles. Let (x p, yp, h p) be a generic point on the line segment. We
have




x p(α)

yp(α)

h p(α)


 =




x1

y1

h1


 + α ·




�x

�y

�h


 (13)

and after transformation to the principal coordinate system of a given
obstacle element,




X p(α)

Yp(α)

Hp(α)


 =




X1

Y1

H1


 + α ·




�X

�Y

�H


 (14)

In the preceding equation, 0 ≤ α ≤ 1,

�x = x2 − x1, �y = y2 − y1, �h = h2 − h1

and �X = X2 − X1, �Y = Y2 − Y1, �H = H2 − H1

(15)

We first consider the ellipsoid obstacle element. Define

D(α) = X 2
p(α)

/
a2 + Y 2

p (α)
/

b2 + H 2
p(α)

/
c2 − 1

= a0α
2 + a1α + a2 (16)

where

a0 = �X 2/a2 + �Y 2/b2 + �H 2/c2

a1 = 2
[(

X1 · �X
)/

a2 + (
Y1 · �Y

)/
b2 + (

H1 · �H
)/

c2
]

a2 = X 2
1

/
a2 + Y 2

1

/
b2 + H 2

1

/
c2 − 1

Clearly, if D(α) > 0 for all α ∈ [0, 1], the specified line segment is
outside of the ellipsoid. Otherwise, if D(α) ≤ 0 for some α ∈ [0, 1],
a part of the line segment is inside of the ellipsoid. Solving for α in
D(α) = 0 leads to

α1,2 = −a1 ±
√

a2
1 − 4a0a2

2a0
(17)

If at least one solution satisfies 0 ≤ α ≤ 1, the line segment intersects
the ellipsoid. Otherwise, the entire line segment is outside of the
ellipsoid.

Next, let us consider a cylinder obstacle. If

H1 > L , H2 > L (18)

or

H1 < 0, H2 < 0 (19)

1002 YANG AND ZHAO

the line segment is clearly outside of the cylinder obstacle. If nei-
ther of these two conditions is true, we need to examine if the line
segment intersects the sides of the cylinder obstacle. Define

D(α) = X 2
p(α) + Y 2

p (α) − {Rb − (Rb − Rt)[Hp(α)/L]}2

= X 2
p(α) + Y 2

p (α) − (({Rb − [(Rb − Rt)/L]H1}

− [(Rb − Rt)/L]�Hα))2

= a0α
2 + a1α + a2 (20)

where

a0 = �X 2 + �Y 2 − [
(Rb − Rt)

2
/

L2
]�H 2

a1 = 2 · {X1 · �X + Y1 · �Y − [
(Rb − Rt)

2
/

L2
]

H1�H

+ [Rb(Rb − Rt)/L]�H
}

a2 = X 2
1 + Y 2

1 − [
(Rb − Rt)

2
/

L2
]

H 2
1 − R2

b + 2Rb H1(Rb − Rt)/L

Clearly, if D(α) > 0 for all α ∈ [0, 1], the specified line segment is
outside of the cylinder. Otherwise, if D(α) ≤ 0 for some α ∈ [0, 1],
a part of the line segment is inside of the cylinder. Solving for α in
D(α) = 0 leads to

α1,2 = −a1 ±
√

a2
1 − 4a0a2

2a0
(21)

If at least one solution satisfies 0 ≤ α ≤ 1, the line segment intersects
the cylinder.

Finally, for obstacles defined by a finite number of surface planes,
we need to examine the relationship of the line segment with every
surface plane. Consider a generic surface plane described by

nx (x − xs) + ny(y − ys) + nh(h − hs) = 0 (22)

where nx , ny , and nh are unit vectors perpendicular to the plane and
point to the interior of the obstacle and xs , ys , and hs are arbitrarily
selected point on the surface plane. If

nx�x + ny�y + nh�h = 0 (23)

the line segment is parallel to the given plane, and whether part of the
line segment is inside the obstacle is determined by its relations with
other surface planes. Otherwise, the line segment or its extension
intersects the plane and the intersection point can be determined
from

nx [x p(α) − xs] + ny[yp(α) − ys] + nh[h p(α) − hs] = 0 (24)

or

α∗ = −nx (x1 − xs) + ny(y1 − ys) + nh(h1 − hs)

nx�x + ny�y + nh�h
(25)

If α∗ < 0 or α∗ > 1 for all surface planes of an obstacle, the entire line
segment is outside of the obstacle. If 0 ≤ α∗ ≤ 1 for a certain surface
plane, the line segment intersects the plane. Because a surface plane
extends into infinity whereas the obstacle has a finite volume defined
by the closure of all of its surface planes, further verifications are
needed. If all of the intersection points with different surface planes
are feasible points, that is, outside of the obstacle, the line segment is
actually outside of the obstacle. Otherwise, part of the line segment
is inside of the obstacle.

Fig. 7 Search space definition.

C. Definition of a Four-Dimensional Search Space
A search space defines the range in which an optimal trajectory

solution is to be found. In this paper, the geometric search space
is represented by a rectangular shape that contains both the start-
ing location, x0, y0, and h0, and the goal location, x f , y f , and h f ,
of an autonomous vehicle. This rectangle can be fully defined by
four parameters: the length L , the width D, the height H , and an
orientation angle in the horizontal plane ψ (Fig. 7), which can be
determined from

ψ = cos−1

[
y f − y0√

(x f − x0)2 + (y f − y0)2

]
(26)

and the transformation to the principal coordinate system is given
as




X

Y

H


 = T (ψ) ·




x − x0

y − y0

h


 (27)

The dimensional parameters need to satisfy

L ≥
√

(x f − x0)2 + (y f − y0)2 (28)

H ≥ max{h0, h f } (29)

and the width D should be large enough to allow for sufficient lateral
movement freedom. On the other hand, too large dimensions would
increase the computational time in trajectory generations.

To employ a discrete search scheme, the search space needs to
be discretized. Spatial discretizations can be made along the three
dimensions by equal length divisions along each dimension with
�L , �D, and �H . Suppose the grid point Gi jk in the principal co-
ordinate system refers to the point at i th interval in the X direction,
j th interval in the Y direction, and kth interval in the H direc-
tion, where i = 0, 1, . . . , Nx = L/�L , j = 0, 1, . . . , Ny = D/�D,
and k = 0, 1, . . . , Nh = H/�H . We have




Xi jk

Yi jk

Hi jk


 =




i · �L(
j − D

2 · �D

)
· �D

k · �H


 (30)

and grid points in the original coordinate system are expressed as



xi jk

yi jk

hi jk


 = T T (ψ) ·




Xi jk

Yi jk

Hi jk


 +




x0

y0

0


 (31)

YANG AND ZHAO 1003

In this discretization scheme, the ground is naturally defined by
h = 0. However, it may not be possible to represent accurately both
the starting altitude and the goal altitude by grid points, unless
h0 = 0. In this paper, the altitude discretization �H is selected such
that the starting altitude is exactly on a grid point, whereas the goal
point is approximated by the nearest vertical grid point.

Because of the dynamic nature of aerospace vehicle flight, the
three-dimensional geometric search space needs to be augmented
by including the time dimension. To discretize the time dimension,
it is convenient to define a maximum range of flight time T , by
which the actual UAV flight time is bounded. Consider a starting
state (x0, y0, h0, V0) and goal state (xg, yg, hg, Vg). If there is no
obstacle and the vehicle changes speed linearly, the flight time would
be given by

T ∗ = 2
√

(x0 − xg)2 + (y0 − yg)2 + (h0 − hg)2

V0 + Vg
(32)

In case the final speed is not specified, one can set Vg = V0 in Eq. (32)
for estimating a reference flight time. On the other hand, there is a
minimum feasible flight time Tmin when obstacles are present in
the flight environment. This minimum flight time may be estimated
approximately or determined via a separate trajectory optimization
problem. The maximum range of flight time T may be estimated as

T = β max{T ∗, Tmin} (33)

where β > 1 is a scaling factor. Then, the time dimension can be
discretized by

�T = T/NT (34)

where NT is the number of time grid points.
In general, vehicle flight speeds vary from grid point to grid point.

For specified spatial movements, speed changes are directly related
to flight times. In fact, the range of feasible speed variations at a
given point defines the range of feasible arrival time variations or
vice versa. As a result, the search space for trajectory generations
in the current paper becomes four-dimensional,

Gi jk,l = (xi jk, yi jk, hi jk, ti jk,l; Vi jk,l) (35)

where l = 1, 2, . . . , NT , ti jk,l are possible arrival times at the point,
and Vi jk,l are corresponding flight speeds at this point. The expres-
sion for the flight speed at a given successor point corresponding to
a specified time of arrival is provided later in Eq. (52). The flight
speed or flight time must be properly reflected in the optimization
performance index or constraints for their inclusions in the search
space to be meaningful.

VI. Application of the A∗ Search Algorithm
Trajectory generation over a discretized search space may be

solved by a number of different discrete search algorithms. The
A∗ search algorithm15 has many good qualities and is used in this
paper. The A∗ search algorithm is basically a best-first search strat-
egy. It begins from the starting grid point (initial vehicle state) and
expands to other grid points, eventually reaching the goal state. In its
core step, the algorithm generates a set of candidate successor points
from the current point and determines which next point among these
points to expand by optimizing the total cost of the next grid point.

The A∗ search algorithm is optimally efficient in that no other
optimal algorithm is guaranteed to expand fewer nodes than A∗. It
is complete on locally finite graphs. It is an optimal algorithm. On
the other hand, it could potentially take a considerable amount of
computational time. Because it stores all generated nodes, it may
run out of computer memory before it runs out of time. Research
progress has been made that overcome the memory problem without
sacrificing optimality or completeness.

A. Generation of Successor Points
To allow for sufficient freedom in trajectory generations, succes-

sor points are selected from neighboring grid points in all directions.
Let GC

i jk,l = (xi jk, yi jk, hi jk, ti jk,l; Vi jk,l) represent the current state;
the set of neighboring points with depth Ns around GC

i jk,l are defined
as

�
[
GC

i jk,l

] = {Gi ′ j ′k′,l ′ ; −Ns ≤ (i ′ − i), (j ′ − j), (k ′ − k) ≤ Ns }
(36)

where the depth Ns is an integer parameter that defines the range of
the GC

i jk,l neighborhood. �[GC
i jk,l] gives (2Ns + 1)3 − 1 neighboring

points, from which successor points are selected. For example, the
set of neighboring points contains 26 points with depth one (Ns = 1)
and 342 points with depth three (Ns = 3).

B. Dynamic Constraints
From the set of neighboring points around the current point, suc-

cessor points are selected such that they are outside of all obstacles
and potential conflicts, line segments from the current node to suc-
cessor points are outside of all obstacles and conflicts, and they
satisfy dynamic constraints of vehicle motions. We now examine
the effects of dynamic constraints on choices of successor points.

In this paper, the flight vehicle is considered as a point mass with
state variables of position x , y, altitude h, speed V , and heading
�. The following dynamic constraints are imposed on the average
motion:

Vmin ≤ V ≤ Vmax, amin ≤ V̇ ≤ amax

|�̇| ≤ �̇max, |ḣ| ≤ ḣmax (37)

where it is assumed amin < 0. In addition, the maximum altitude
change and the maximum heading angle change from the current
point to a successor point are bounded,

|�h| ≤ �Hmax, |��| ≤ ��max (38)

where all of the bounds can be defined as functions of locations,
that is, Vmin(x, y, h), for flexibility.

Let P(x p, yp, h p, tp; Vp), C(xc, yc, hc, tc; Vc), and S(xs, ys, hs,
ts; Vs) represent parent, current, and a potential successor node
point, respectively. Altitudes of feasible successor points should
satisfy

|hs − hc| ≤ min{ḣmax(�dcs/Vc), �Hmax} (39)

where the distance from the current point to a successor point is
given by

�dcs =
√

(xs − xc)2 + (ys − yc)2 + (hs − hc)2 (40)

The heading orientations of the line segments PC and CS are
represented by �pc and �cs, respectively, and can be determined
from

sin �pc = xc − x p√
(xc − x p)2 + (yc − yp)2

(41)

sin �cs = xs − xc√
(xs − xc)2 + (ys − yc)2

(42)

Constraints on the heading angle change from the current point to a
successor point as required by Eqs. (37) and (38) result in

|�cs − �pc| ≤ min{�̇max(�dcs/Vc), ��max} (43)

If xs = xc and ys = yc, but hs �= hc, there is no constraints on the
heading angle change.

Finally, the speed constraints require that

Vs ≥ max
{√

V 2
c + 2amin�dcs, Vmin

}
(44)

Vs ≤ min
{√

V 2
c + 2amax�dcs, Vmax

}
(45)

1004 YANG AND ZHAO

C. Feasible Range of Time Increments
For a given flight distance �dcs and specified flight speeds at two

endpoints, the time-of-flight between the two points is fixed. As a
result, limits on the flight speed at a successor point define a feasible
range for the time of arrival at the successor point,

ts = tc + τs (46)

where τs =
�t, (
 + 1)�t, . . . , m�t for appropriate integers
 and
m such that

τmin ≤ τs ≤ τmax (47)

To achieve the shortest flight time between two grid points, the
vehicle would increase its speed using the maximum acceleration
possible and then stay at the maximum allowed speed. After some
derivation, we have

τmin =
{(√

V 2
c + 2amax�dcs − Vc

)/
amax, �dcs ≤ dt1

(Vmax − Vc)/amax + (�dcs − dt1)/Vmax, �dcs > dt1

(48)

where dt1 determines the distance required to reach the maximum
speed Vmax(xs, ys, hs) at a successor point from the current speed
Vc using the maximum acceleration amax,

dt1 = V 2
max − V 2

c

2amax
(49)

To use the longest flight time feasible between two grid points,
the vehicle would do the opposite provided the minimum allowed
speed is nonzero. If Vmin = 0, on the other hand, the vehicle can only
decelerate gradually to reach the zero speed at the successor point.

τmax =




(√
V 2

c + 2amin�dcs − Vc

)/
amin, �dcs ≤ dt2

min{T − tc, (Vmin − Vc)/amin

+ (�dcs − dt2)/Vmin}, �dcs > dt2 (50)

where dt2 is the distance needed to reach the minimum speed
Vmin(xs, ys, hs) at a successor point from the current speed Vc using
the minimum acceleration amin (or maximum deceleration),

dt2 = V 2
min − V 2

c

2amin
(51)

If ts is the time of arrival at a successor point, the corresponding
speed Vs at this successor point is given by

Vs = 2�dcs/τs − Vc (52)

truncated by the allowable bounds on the flight speed

Vs =
{

Vmax, if Vs > Vmax

Vmin, if Vs < Vmin (53)

D. Total Cost and Past Cost
The total cost at a selected node is the sum of the past cost and a

heuristic cost,

Total cost = Pcost + W · Hcost (54)

Past cost is the actual value of the cost in Eq. (1) from the starting
point to reach the selected grid point, whereas the heuristic cost is an
estimation of the cost in Eq. (1) (or the cost-to-go) from the selected
point to the specified goal state. W > 0 is a weighting factor.

The past cost is accumulative along the path and, thus, depends
on the specific path traversed. The incremental path distance from
the parent point to the current point is given by

�dpc =
√

(xc − x p)2 + (yc − yp)2 + (hc − h p)2 (55)

It is assumed that the autonomous vehicle changes speed linearly
between the two points. The average speed between the two points
is, therefore,

V̄ = (Vc + Vp)/2 (56)

and the incremental flight time is given by

�tpc = �dpc/V̄ (57)

As a result, the past cost of the current node is given by

dc = dp + �dpc, tc = tp + �tpc (58)

and from Eq. (1),

Pcost = Kd · dc + Kt · tc (59)

E. Choices of Heuristic Functions
The proper use of a heuristic function can effectively reduce the

size of a huge search problem, and its choice is vitally important to
the convergence rate of an A∗ search algorithm. The heuristic cost
takes the same form as the past cost. For the A∗ search scheme to be
optimal, the heuristic cost should never overestimate the actual cost
and should be zero at the goal state. In this paper, the distance term
of the heuristic function is selected to be the straight line distance
from current location xc, yc, hc to the goal location xg, yg, hg ,

d =
√

(xc − xg)2 + (yc − yg)2 + (hc − hg)2 (60)

The time term is selected to the shortest feasible time for the vehicle
to reach the goal location from current position. An estimate for the
shortest feasible time is obtained by assuming that the autonomous
vehicle would fly at the maximum possible speed profile from the
current position to the goal location. Expressions for an estimate of
the shortest time-to-go depend on whether there is a speed constraint
at the goal state and how close the current location is to the goal
location.

When there is no constraint on the goal speed, the speed profile
that produces the shortest time-to-go heuristic and satisfies dynamic
constraints of vehicle flight is shown in Fig. 8. Here we define a
critical distance dcr,0, which is the distance required to reach the
maximum speed Vmax from the current speed Vc using the maximum
acceleration amax,

dcr,0 = V 2
max − V 2

c

2amax
(61)

If d < dcr,0, the autonomous vehicle would simply accelerate at amax

till it reaches the goal location, to arrive at the goal location as soon
as possible. We have

V 2
g = V 2

c + 2amaxd, t f = (Vg − Vc)/amax (62)

Fig. 8 Speed profile for shortest time-to-go without goal speed con-
straint.

YANG AND ZHAO 1005

If d ≥ dcr,0, on the other hand, there would be two phases in the
shortest time-to-go speed profile. An estimate of the shortest time-
to-go is given by

t f = (Vmax − Vc)/amax + (d − dcr,0)/Vmax (63)

where the first term represents the time needed for the autonomous
vehicle to accelerate from Vc to Vmax and the second term is the
time needed for the autonomous vehicle to maintain the speed of
Vmax till it reaches the goal location. If the autonomous vehicle is
at the goal location xg, yg, hg , then d = 0 in Eq. (62), Vg = Vc, and,
thus, t f = 0. In other words, the heuristic time-to-go becomes zero
at the goal state. The heuristic time-to-go obviously underestimates
the actual time-to-go. Therefore, it satisfies requirements of the A∗

algorithm.
When there is a specified speed at the goal state, the problem

of developing a heuristic time-to-go becomes a little more com-
plicated. Let Vg represent the specified speed at the goal state:
Vmin ≤ Vg ≤ Vmax. Figure 9 shows speed profiles for the three possi-
ble cases of Vg > Vc, Vg < Vc, and Vc = Vg . We need to define two

a)

b)

c)

Fig. 9 Speed profiles for estimating shortest time-to-go with a specified
goal speed: a) Vg > Vc, b) Vg < Vc, and c) Vg = Vc.

critical distances as shown in Fig. 9 for estimating the shortest time-
to-go. Here, dcr,1 is the distance required to reach Vg from Vc using
either amax or amin, depending on the relation between the values of
Vg and Vc,

dcr,1 =




(
V 2

g − V 2
c

)/
2amax, Vg > Vc

(
V 2

g − V 2
c

)/
2amin, Vg < Vc

0, Vg = Vc (64)

Also, dcr,2 is the sum of the distance required to accelerate till Vmax

from current Vc and the distance used to decelerate from Vmax to Vg .
For all cases,

dcr,2 = V 2
max − V 2

c

2amax
+ V 2

g − V 2
max

2amin
(65)

If Vg �= Vc in Fig. 9, an estimated shortest time-to-go depends on
the distance from the current point to the goal point. 1) If d < dcr,1,
there is just one phase and the estimated shortest time-to-go can be
given as

t f =
{

(Vg − Vc)/amax, Vg > Vc

(Vg − Vc)/amin, Vg < Vc (66)

2) If dcr,1 ≤ d < dcr,2, on the other hand, there are two phases in the
assumed speed profile. In the first phase, the autonomous vehicle
would accelerate at amax till it reaches some speed Vm , it would then
decelerate at amin. The time at which when the acceleration would
turn into a deceleration is determined from

t1 = (Vm − Vc)/amax (67)

d1 = Vc · t1 + 1
2 · amax · t2

1 (68)

During the second phase, the autonomous vehicle would slow down
at amin till it achieves Vg at the goal location,

t2 = (Vg − Vm)/amin (69)

d2 = Vm · t2 + 1
2 · amin · t2

2 (70)

Because d1 + d2 = d, we have

Vm =
√

2damaxamin + V 2
c amin − V 2

g amax

amin − amax
(71)

and the estimated minimum time-to-go is given by

t f = t1 + t2 (72)

3) Finally, if d ≥ dcr,2, there are three phases in the assumed speed
profile. During the first phase, the autonomous vehicle would accel-
erate from Vc to Vmax,

t1 = (Vmax − Vc)/amax (73)

d1 = Vc · t1 + 1
2 · amax · t2

1 (74)

During the third phase of deceleration, the autonomous vehicle
would slow down from Vmax to Vg ,

t3 = (Vg − Vmax)/amin (75)

d3 = Vmax · t3 + 1
2 · amin · t2

3 (76)

During the middle phase, the vehicle would move at the speed Vmax,

t2 = d2/Vmax (77)

where

d2 = d − d1 − d3 (78)

1006 YANG AND ZHAO

As a result, the estimated shortest time-to-go is given by

t f = t1 + t2 + t3 (79)

For the special case where Vg = Vc in Fig. 9, dcr,1 = 0, and the
speed profile for d < dcr,2 and d ≥ dcr,2 are the same as in the pre-
ceding discussion. The preceding heuristic time-to-go also becomes
zero at the goal state and underestimates the actual time-to-go. Thus,
it satisfies requirements of the A∗ algorithm.

VII. Numerical Results
Numerical examples are now presented to illustrate applications

of the proposed discrete search strategy. The following performance
parameters are assumed imitating those of an autonomous heli-
copter model: Vmin = 0, Vmax = 100 ft/s, amin = −0.1 g, amax = 0.1 g,
�̇max = 40 deg/s, ḣmax = 20 ft/s, (dh/dx)max = tan 50 deg, and
(d�/dx)max = tan 30 deg. The longitudinal, lateral, and vertical di-
mension of the geometric search space are selected to be L = 104 ft,
D = 2500 ft, and H = 2500 ft, to mimic a downtown environment
in which the autonomous vehicle needs to fly from one end to the
other. Buildings and other constructions are represented by basic
obstacle elements and their combinations. The flight-time range is
selected to be T = 200 s.

Choices of the discretization grid sizes affect the compromise
between computational time and trajectory smoothness. In compar-
ison, the choice of the successor generation depth Ns can have a non-
linear effect on the convergence of the trajectory generation process.
A smaller Ns results in a smaller number of successor points for con-
sideration at each step, but a small number of successor point choices
may hinder the progress toward the goal state and, thus, slow down
the overall problem convergence and vice versa. In the following
examples, it is assumed that Nx = 30, Ny = 30, Nh = 30, NT = 200,
and Ns = 3. All computations were performed on a 2000-era Sun
workstation.

Figure 10 shows the resulting optimal trajectories in the pres-
ence of six stationary obstacles, where four ellipsoid elements are
specified with the following parameters:

E1 : xc = 2000, yc = 0, hc = 0

a = 200, b = 1000, c = 200

E2 : xc = 3000, yc = 100, hc = 250

a = 500, b = 500, c = 200

E3 : xc = 7000, yc = 0, hc = 0

a = 600, b = 600, c = 500

E4 : xc = 8000, yc = −1000, hc = 300

a = 400, b = 400, c = 400

one cuboid element is specified with

Cu : xc = 5000, yc = −1000, hc = 250

a = 500, b = 1200, c = 1000

and one cylinder element is specified with

Cy : xc = 3000, yc = 100, hc = 0

a = 500, b = 500, c = 250

where all location and dimension parameters are measured in feet
and all orientation angles are assumed to be φ = 0, θ = 0, and
ψ = 0. The combination of one ellipsoid element with the cylin-
der element is assumed in reference of a metrodome structure. In
this example, the initial flight speed is assumed to be V0 = 60 ft/s.
The optimization performance index is selected to have Kd = 0.5

a)

b)

Fig. 10 Optimal flight trajectory in stationary obstacles: a) three-
dimensional view and b) top view.

Fig. 11 Optimal trajectory avoiding a small obstacle.

and Kt = 0.5 and W = 100 in Eq. (54). The trajectory genera-
tion process converged in around 21,824 ms. The final flight time
is t f = 134 s.

Figure 11 shows that the proposed search algorithm can avoid
obstacles smaller than the smallest grid size. In this example, the
third ellipsoid obstacle in the preceding example is replaced by a
small ellipsoid with

E ′
3 : xc = 7000, yc = 0, hc = 200, a = 50

b = 50, c = 50, φ = 0, θ = 0, ψ = 0

YANG AND ZHAO 1007

Fig. 12 Optimal trajectory avoiding a moving obstacle.

Fig. 13 Optimal trajectory with varying maximum speed fields: short-
est time flight with Kd = 0.01 and Kt = 0.9.

In addition, the horizontal orientation of the cuboid obstacle is
changed to (just to verify the algorithm)

C ′
u : ψ = π/4

The solution process converged in around 22 s. The final flight time
is t f = 125 s.

In Fig. 12, trajectory planning in the presence of moving obsta-
cles is studied. Parameters of the stationary obstacles are the same
as in the first example, except that the orientation angle of the cuboid
obstacle is changed to C ′

u : ψ = π/4. A moving ellipsoid obstacle
is introduced to the flight environment. The center location of the
moving obstacle is assumed to be a function of time as xc(t) = 9500,
yc(t) = −1000 + 10t , and hc(t) = 0, and the dimensions are
a = 300, b = 300, and c = 300. The moving obstacle together with
stationary obstacles are avoided successfully, and the solution pro-
cess converged in around 167 s. The final flight time is t f = 133 s.

The fourth example illustrates the tradeoff between flight distance
and time when the maximum allowed flight speeds are location
dependent. In this example, it is assumed

Vmax(x, y, h) = 100 + 200(2y/D) (80)

In other words, the maximum allowed flight speed is larger toward
the outer sides of the specified flight space. If it is desirable to achieve
a shorter flight time (Kd = 0.01 and Kt = 0.9), the vehicle tends to fly
on the outer sides to take advantage of the larger allowed maximum
speeds, as shown in Fig. 13, where the flight time is t f = 124 s but
the flight distance is larger. If it is desirable to follow a shorter flight
path (Kd = 0.9 and Kt = 0.01), the solution trajectory gives a shorter
flight distance with longer flight time: t f = 145 s, as shown in Fig. 14.

Fig. 14 Optimal trajectory with varying maximum speed fields: short-
est distance flight with Kd = 0.9 and Kt = 0.01.

Numerous other examples with different combinations of ob-
stacles were studied. These examples demonstrate that the pro-
posed discrete search strategy can be used to generate feasible four-
dimensional flight trajectories. Appropriate tradeoffs may need to
be made between levels of global optimality and computational time
through the choices of algorithm parameters such as the weighting
in the total cost, grid sizes, and the successor generation depth, as
well as specifications of the flight space.

The use of the weighting W in Eq. (54) makes it possible to exam-
ine different search strategies in the generation of flight trajectories.
W = 1 corresponds to the standard A∗ algorithm. When W is very
large, for example, W = 100, the algorithm approaches the greedy
search strategy, where only heuristic cost is used in determining
which next node to consider. For the current four-dimensional tra-
jectory generation problem, the greedy search algorithm tends to
produce solutions fast at the expense of local optimality. When W
is very small, on the other hand, the algorithm amounts to a uniform-
cost search strategy. Experiences show that the uniform-cost search
strategy can take a substantial amount of computational time. A vari-
ation of the A∗ strategy with dynamic weighting was also studied,
in which the weight W is varied as a function of location. Specif-
ically in the current trajectory generations, W = 100 is used when
the grid point under consideration is still far from the goal point,
and W = 1 is used toward the goal point. This dynamic weighting
has the advantage of encouraging grid point expansions toward the
goal point and thus improving solution convergence speed. Overall,
it is found that the A∗ search strategy and its variations can be used
effectively to generate feasible four-dimensional flight trajectories
for UAV operations.

VIII. Discussion
In this paper, the issue of autonomous aerospace vehicle flight

in an uncertain environment is not directly addressed. This is an
important aspect of practical applications of any trajectory genera-
tion algorithm. In coping with uncertainties in a flight environment,
the proposed discrete search method may be used periodically to
regenerate new trajectory plans when knowledge of the environ-
ment is updated. This approach does not affect the application of
the A∗ algorithm. Alternatively, a stochastic search scheme may be
used together with the proposed representations of obstacles and
conflicts and the discretization of the search space. For example,
a stochastic dynamic programming scheme may be used for the
same search space discretization and obstacle representation. Fur-
ther studies are needed on the proposed discrete search strategy
to understand necessary modifications and its performances in the
presence of uncertainties in the flight environment.

Real-time properties of the developed discrete search strategy
are not yet studied. To facilitate real-time applications, bounds on

1008 YANG AND ZHAO

actual computational times must be developed. For a given onboard
computer system, a sufficiently short computational time can be
achieved at the expense of compromising the global optimality, re-
sulting in locally optimal solutions. The proposed discrete search so-
lution strategy is promising in delivering trajectory solutions within
a specified period of time, but further studies are needed to establish
relationships among algorithm parameter selections, computational
times, and degree of optimality.

IX. Conclusions
This paper presents a discrete search optimization strategy for

generations of four-dimensional trajectories onboard a single au-
tonomous aerospace vehicle. In this strategy, a four-dimensional
search space is defined and discretized in both space and time. Ob-
stacles and potential conflicts are represented by several basic shapes
and/or their combinations. Mathematical conditions are developed
for a given point as well as a trajectory segment between two points
to be outside of an obstacle. The A∗ search technique is used to obtain
trajectory solutions, in which successor trajectory points are selected
that both avoid obstacles and satisfy dynamic motion constraints of
the vehicle. A linear combination of flight distance and time is opti-
mized in the trajectory generation process. At each search step of the
A∗ algorithm, the total of past cost and a heuristic function estimat-
ing the future cost-to-go is minimized. The heuristic distance func-
tion is selected to be the straight line distance from the current loca-
tion to the goal location, whereas the heuristic time is selected to be
the shortest flight time possible from the current location to the goal
location.

Numerical examples show that the proposed discrete search strat-
egy can handle a wide range of obstacle and conflict scenarios. It
is able to generate feasible flight trajectories rapidly and has the
potential to be used for real-time trajectory planning. In specific
implementations, parameters of the algorithm need to be selected
to achieve a desired level of tradeoff between computational speed
and global optimality.

Acknowledgments
This research is supported by the Rotorcraft Division of

NASA Ames Research Center under NGG 2-1428, monitored by

M. Whalley. The authors thank anonymous reviewers for many help-
ful comments.

References
1Fahlstrom, P. G., and Gleason, T. J., Introduction to UAV Systems, UAV

Systems, Columbia, MD, June 1998, pp. I-1–I-11.
2Krozel, J. A., “Search Problems in Mission Planning and Navigation of

Autonomous Aircraft,” M.S. Thesis, School of Aeronautics, Purdue Univ.,
Layfayette, IN, May 1988.

3Chandler, P. R., Rasmussen, S., and Pachter, M., “UAV Cooperative Path
Planning,” AIAA Paper 2000-4370, Aug. 2000.

4McLain, T. W., and Beard, R. W., “Trajectory Planning for Coordinated
Rendezvous of Unmanned Air Vehicles,” AIAA Paper 2000-4369, Aug.
2000.

5Judd, K. B., and McLain, T. W., “Spline-Based Path Planning for Un-
manned Air Vehicles,” AIAA Paper 2001-4238, Aug. 2001.

6Frazzoli, E., Dahleh, M. A., and Feron, E., “Real-Time Motion Plan-
ning for Agile Autonomous Vehicles,” Journal of Guidance, Control, and
Dynamics, Vol. 25, No. 1, 2002, pp. 116–129.

7Latombe, J.-C., Robot Motion Planning, Kluwer Academic, Norwell,
MA, 1991.

8Faiz, N., Agrawal, S. K., and Murray, R. M., “Trajectory Planning of
Differentially Flat Systems with Dynamics and Inequalities,” Journal of
Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 219–227.

9Mettler, B., Tischler, M. B., and Kanade, T., “System Identification
Modeling of a Small-Scale Unmanned Rotorcraft for Flight Control De-
sign,” Journal of the American Helicopter Society, Vol. 47, No. 1, 2002,
pp. 50–63.

10Mettler, B., Kanade, T., Tischler, M. B., and Messner, W., “Attitude
Control Optimization for a Small-Scale Unmanned Helicopter,” AIAA Paper
2000-4059, Aug. 2000.

11Shim, D. H., Kim, H. J., and Sastry, S., “Hierarchical Control System
Synthesis for Rotorcraft-Based Unmanned Aerial Vehicles,” AIAA Paper
2000-4057, Aug. 2000.

12Sasiadek, J. Z., and Duleba, I., “3D Local Trajectory Planner for
UAV,” Journal of Intelligent and Robotic Systems, Vol. 29, No. 2, 2000,
pp. 191–210.

13Gupta, K., and Del Pobil, A. P. (eds.), Practical Motion Planning in
Robotics, Wiley, Chichester, U.K., 1998, Pt. 1.

14Kant, K., and Zucker, S., “Toward Efficient Trajectory Planning: the
Path-Velocity Decomposition,” International Journal of Robotics Research,
Vol. 5, No. 3, 1986, pp. 72–89.

15Russell, S., and Norvig, P., Artificial Intelligence, A Modern Approach,
Prentice–Hall, Upper Saddle River, NJ, 1995, pp. 96–101.

